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AVERAGED EXPRESSION FOR THE BULK-DENSITY VECTOR
OF THE CAPILLARY FORCE IN A SINTERED POWDER MIXTURE

V. P. Bushlanov UDC 541.24:532.5

An expression for the surface force in a medium with developed boundary surface that is con-
venient for practice is obtained by an additional space averaging of the known expression for
the bulk density of this force in the form of surface-energy doubled density tensor divergence.

Upon hot pressing of powders and their free sintering the powder particles are melted; this leads
to the formation of a developed interface surface subjected to the action of surface-tension forces in such
media [1]. In this case, a significant capillary pressure proportional to 2X/r, where ¥ is the surface-tension
coefficient and r is the radius of curvature, acts on the particle surfaces. We consider the combined action
of capillary forces in the processes of hot pressing and sintering within the framework of a physical model
and the complete system of averaged equations of the mechanics of heterogeneous media [2]. The averaged
surface-force bulk density Py in the averaged momentum equation for the interphase boundary has the form
[2, formulas (2.2.33) and (2.3.2)]
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512 is the interphase-surface area per unit volume, §'L is the interphase boundary in the averaging volume
dV which bounds the areas of the elements forming the interphase surface §’'S|2 contained in the volume dV/,
d'l is the element of length of the boundary &L, ()2 is the averaging over the entire interphase surface
contained in the volume dV, and 74 is the unit vector tangent to the interphase surface:

T2 =1 xn. (3)

Here n is the unit normal vector of the interphase surface and [ is the unit vector tangent to the interphase
boundary 6'L. Below, we derive an expression (Pyx) that is convenient for applications by means of the
additional spatial averaging (1) within the framework of the physical model from [2].

We average (1) as follows. Let dV) be the cube with face A. We choose the following N — 1 cubes
dV,, (m = 2,3,....N) in such a way that each (m + 1)th cube contains the mth cube and the distance
between the surfaces of the adjacent cubes is equal to & < A. Figure 1 shows the boundaries of the cube
faces dV,, (the solid curve) and dVj,4; (the dashed curve) which are perpendicular to the unit vector of
the coordinate system e3, and the shaded regions are the intersection of the cube face dV), with the melted
particles contained in the powder volume. We write the averaging (1) in the form
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Here §'Si2,m is the magnitude of the interphase surface in the volume dV},,. As in [2], summation is performed
over the vth boundaries &' L,,(v) lying only on the cube faces dV},, and being the lines of intersection of these
faces with the interphase surface. The integrals over the segments of the contours §'L,,(v), which are the
common boundaries of the singly connected surfaces of the multiply connected interphase boundary inside
the volumes dV;,, vanish upon summation, because the unit vectors 719 of the adjacent surfaces have the
opposite directions. Let

a=4N, (5)
where ¢ < a < A. From (2)—(5), we have

Here e; is the unit vector of the orthogonal coordinate system and (Pyx); is the ith component of the capillary-
force averaged density (4). Let the subscript g mean the cube side the normal to which is e,. We have

0 = |1yl dr. (7)
where 7, = T2 - e4 and dr is the distance reckoned along the interphase surface toward 712. Figure 2 shows
the fragment of a powder particle contained in the cube dV;, (the solid line) and the fragment of this particle
contained between the cube faces dV},, and dVi,,; perpendicular to e3 (the dashed line). Because [-e;, =0
on the cube face, one can decompose the vector e4 only in terms of the vectors n and Ty2:

ey = Ngn + T4Tio. (8)
Here ny = n - e,. Multiplying (8) scalarly by e;, we obtain

TiTg = 0ig — NiNg, 9)
where 8;, is the Kronecker symbol. Replacing (6) dV,, by dV}, with an error of about a/A < 1. from (6),
(7), and (9) we obtain
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Here dS' = dldr and S 1+2 g and Spp g (g =1, 2, 3) are the interphase surfaces contained in the volumes of the
truncated pyramids whose bases are the parallel cube faces dV} and dVy (the superscript plus corresponds to
the truncated pyramids constructed on the sides of the above-indicated cubes having the positive coordinates
relative ¢ - the center of the cube dV}). In deriving (10), it was taken into account that ¢ = 74 dT for truncated

pyramids with the plus superscript and ¢ = —7,; d7 for truncated pyramids with the minus superscript.
Let
v
Ty = i‘; 7{ (0ig — ning)d'S, (11)
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where T}, is the bulk-density tensor of the surface energy (the surface-energy tensor was introduced in [3}).
Since T,, = Es;2 from (11), the trace of the bulk-density tensor of the surface energy is equal to the
bulk density of the surface energy.
Using (11), we expand (10) in a power series of A, discarding terms of order A* and allowing for the
fact that the volumes of the truncated pyramids are equal to approximately aA2. We obtain
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Here ¢t is the time, T are the coordinates of the center of the cube dV;, and = + e,A /2 are the coordinates of
the faces of this cube.
By analogy with the differential equations of motion in the continuum models with the use of stress-
tensor divergence and according to (12), the tensor 273, can be called a capillary-stress tensor.
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